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Abstract-The existence of hydrodynamic instabilities leads to the formation of Taylor vortices in flows 
in the annulus between two concentric cylinders with one or both cylinders rotating. The study of heat 
transfer within the rotating enclosure is complex. For horizontal configuration, the buoyancy and the 
centrifugal effects (created by the heated rotating cylinder) are orthogonal and give rise to fully three- 
dimensional flows. The results of a three-dimensional numerical analysis of flows and heat transfer in a 
horizontal annulus with a heated rotating inner circular cylinder are presented. Solutions are presented 
over a wide range of the rotational Reynolds (Taylor) number and the Grashof number. The effect of the 
centrifugal instability on the heat transfer is examined. The aspect ratio I- is varied from 1.0 to 10.0 while 

the radius ratio q for the annulus is maintained at the value of 2.6 for the results presented. 

INTRODUCTION 

THE STUDY of heat transfer in rotating bodies has a 
variety of practical applications in industry. These 
include cooling of turbine rotors or electrical motor 
shaft, cooling of high speed gas bearings, rotating 
condensers for sea water distillation, etc. The flow 
fields in such systems are complex due to interactions 
of the inertia, buoyancy and the centrifugal effects. 
In a heated rotating system the buoyancy and the 
centrifugal forces are of importance. The resultant 
combination of these determines the flow pattern and 
the heat transfer mechanism. Two-dimensional natu- 
ral convection in a horizontal concentric annulus has 
been intensely studied numerically and experimentally 
in both laminar and turbulent regimes [l-5]. The 
forced flow due to an unheated rotating cylinder, in 
which only the centrifugal force is considered, will 
lead to the Taylor vortices because of the existence of 
hydrodynamic instability when the Reynolds (Taylor) 
number reaches a critical value [6,7]. A com- 
prehensive review of the analytical and experimental 
investigations for the annulus with a rotating inner 
cylinder is given by DiPrima and Swinney [S]. Ball 
and Farouk [9] and Ball [lo] undertook a detailed 
study on the development of Taylor vortices and the 
distribution of heat transfer in a vertical annulus with 
a heated rotating inner cylinder. For the vertical orien- 
tation (for moderate speeds of rotation), the flow field 
generated by the centrifugal and the buoyancy effects 
are both axisymmetric. For the horizontal con- 
figuration, however, the buoyancy and the centrifugal 
effects will give rise to fully three-dimensional flows 
when the centrifugal force. is strong enough to trigger 
the formation of the Taylor cells. Fusegi et al. [l l] 
presented numerical results for two-dimensional 

(r - 0) mixed convection in the annulus between hori- 
zontal concentric cylinders with a heated rotating 
inner cylinder. The study was limited to slow 
rotational speeds of the inner cylinder so that the 
appearance of Taylor cells was precluded. When the 
rotational Reynolds number is increased beyond a 
critical value, the flow will become unstable hydro- 
dynamically and will then lead to the formation of 
Taylor vortices which necessitates a three-dimensional 
analysis. Fusegi and Farouk [ 121 also presented results 
for three-dimensional natural convection within an 
annulus with an aspect ratio of unity. 

This paper presents the results of three-dimensional 
mixed convection in a horizontal rotating annulus. 
The main objective of the paper is to quantify the 
interaction of the buoyancy and centrifugal forces and 
determine the effects of secondary flow structures (due 
to the Taylor cells) on the heat transfer. From the heat 
transfer distributions on the surfaces, the structure of 
convective flow is evaluated. The inner cylinder is 
considered to be rotating at a uniform speed while 
the outer cylinder and end-plates are held stationary. 
Both the inner and the outer cylinders are isothermal 
with the inner cylinder being hotter than the outer one. 
The no-slip conditions are applied for all enclosure 
surfaces. Thermally insulated flat end-plates are con- 
sidered. The geometry of the problem is shown in Fig. 
1 where the angle 0 is measured from the bottom 
vertical line. 

MATHEMATICAL FORMULATION 

The geometry is specified by the radius ratio 
q = R,/R, and the aspect ratio I- = H/d, where d 

denotes the gap width (R,-Ri). The aspect ratio is 
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NOMENCLATURE 

gap width, R, - R, 
Grashof number, gBd’(T, - T,)/v’ 

height of annulus 
thermal conductivity 
Nusselt number, qd/k( T, - To) 
pressure 
Prandtl number, C&k 
heat flux 
radius 
radius of inner or outer cylinder 
Reynolds number, oRid/v 
time 
temperature 
radial velocity component 
angular velocity component 

w axial velocity component 
Z axial location. 

Greek symbols 
I- aspect ratio, H/d 

q radius ratio, RJR, 

0 circumferential location 

p molecular viscosity 
V kinematic viscosity 
cr densiometric Froude number, Gr/Re2 
0 angular speed of rotation of inner cylinder. 

Subscripts 
i inner cylinder 
0 outer cylinder. 

au au v au uv au 
z+ug+;a+-+wY& r 

varied from 1 .O to 10.0 and the radius ratio is set equal 
to 2.6 for all cases considered. The wide range of 
aspect ratio studied revealed interesting effects on the 
structure of the secondary flow fields. Air is con- 
sidered as the medium, with the Prandtl number being 
equal to 0.72. 

= --i$+ +GrTsin(@) (3) 

aw aw v aw aw ap 
~+ujy++~+ww= -az+V2w (4) 

Governing equations and boundary conditions 
Three-dimensional incompressible Navier-Stokes 

and energy equations were used to describe the 
problem. By introducing the following dimensionless 
variables (an overbar means a dimensional quantity) 

r=c z z=~ u=u v=v WL t=‘UO 
d d uo uo uo d 

_ _ 
p=& and T=‘-T, where u. = v 

0 T - T, d 

the dimensionless time-dependent equations of fluid 
flow and heat transfer in cylindrical coordinates are 
given by 

1 d 
;r(ru)+Sg+g=O 

a14 au v au au 2 
~+UI&+;ae+Waz--- 

r 

= -GrTcos(Q) (2) 

FIG. 1. The three-dimensional annular geometry. 

and 

ar dT VaT 
t+u,+;w+w~=;rV2T. (5) 

The Boussinesq approximation is applied in the 
above formulation. The coupled sets of equations are 
numerically integrated with the following boundary 
conditions : 

along the inner cylinder : (r = 0.625) 

u=O v=Re w=O T=l 

along the outer cylinder (r = 1.625) 

u=O v=O w=O T=O 

along the end-plates (z = 0 and z = zn) 

u=O v=O w=O %o. 
az 

For the present formulations and the non-dimen- 
sional parameters used, the rotational effects enter via 
the boundary conditions at the inner cylinder. It can 
be shown easily that the relative strength of the buoy- 
ancy and the centrifugal forces in the problem is given 
by the ratio a (densiometric Froude number) = 
Gr/Re2. For isothermal flows (Gr = O.O), the rota- 
ting inner cylinder induces a Couette flow for slow 
speeds of rotation. The rotational instability (Taylor 
vortex flow) is triggered when the Reynolds number 
exceeds a critical value (often described as the critical 
Taylor number in the literature). When a temperature 
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gradient exists in the problem, the buoyancy induced RESULTS AND DISCUSSION 
flow interacts with the rotational flow which can delay 
the onset of the Taylor vortex type flow in the annulus. 

Results were obtained for isothermal (Gr = O.O), 

The Nusselt numbers Nu (z, t?) for the inner and the 
non-rotating (Re = 0.0) and mixed convection modes 

outer cylinders are defined as 
for the finite annular geometry. The maximum allow- 
able values of Gr and Re were sufficiently low so that 

and 

NU (z,Qt = q(z, @)i4tk(T, - To)1 

Nu (z, 69, = q(z, 6)J/[k(T, - To)], 

only laminar flows were encountered. While results 
were obtained for different values of the aspect ratio 
r, the radius ratio q was held constant at 2.6 for all 
cases considered. For the isothermal case, the flow 
field is essentially one dimensional (except near the 

respectively. 
For convenience in presenting the results, we define (a) 

the circumferentially averaged Nusselt number Nus 
for the inner and outer cylinders as 

outer cylinder 

\ 

Nus = & s 2n 

Nu (0, z) de. 
0 

Similarly, the longitudinally averaged Nusselt number 
Nu, is defined as follows : inner cylinder /( 

Nu, = 1 s ZH 

zH 0 

NU (e, Z) dz 

where zH is the length of the annulus. The global mean 
Nusselt number (for the inner or the outer cylinder) 
then can be defined as 

NU (6, Z) dz de. 

NUMERICAL METHOD 

A staggered mesh system is adopted for the deri- 
vations and solution of the finite difference approxi- 
mation to the differential equations. The SIMPLE 
scheme of Patankar [13] is used to solve the finite 
difference equations resulting from the discretization. 
The application of the SIMPLE algorithm in cyl- 
indrical coordinates is quite common and the details 
of the application are given in Patankar [13]. For 
specified Grashof and Reynolds numbers, the result- 
ing finite difference equations are solved in a time 
marching manner until a steady state condition is 
achieved. The computations employ a uniform mesh 
system with 1 l(r) x 24(e) x 30(z) grid points for low 
aspect ratio (r < 6.0) cases. The grid points in the 
axial directions were proportionately increased for the 
high aspect ratio cases. For the range of parameters 
considered and the aspect and radius ratios of the 
problem geometry, the above grids were found to be 
adequate. Sample calculations were performed with 
denser grids for selected cases which did not produce 
appreciable differences in the flow structure or the 
heat transfer characteristics. All computations were 
performed on a CRAY X-MP supercomputer at the 
Pittsburgh Supercomputing Center. The typical CPU 
time used for one complete case was about 600 s. 

lb) 

u,v.w 

0 I 2 a I s 6 

2 

FIG. 2. (a) Streamlines for axisymmetric flow in the finite 
annulus at any arbitrary 0 location Gr = 0.0, Re = 100, 
r = 6.0. (b) Velocity distributions along the length of the 
annulus at r = (r,-r,)/2 at any arbitrary 0 location. 

Gr = 0.0, Re = 100, r = 6.0. 

FIG. 3. Azimuthal velocity distribution along the r--z plane 
at any arbitrary location. Gr = 0.0, Re = 100, r = 6.0. 
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end-plates) when the rotational speed of the inner 
cylinder is below the critical Reynolds number. From 
linear stability theory, the critical Reynolds number 
for the onset of the Taylor vortices (for a wide gap 

case) is equal to 64. This was verified by our com- 
putations also. When Re > 64, the flow field is char- 
acterized by toroidal vortices which appear in the 
form of counter-rotating cells. The cells usually occur 
in pairs and for moderate speeds of rotation of the 

inner cylinder, the flow field remains axisymmetric. 
Figure 2(a) shows the streamlines (based on the radial 
and axial components of velocities) along any arbi- 
trary fI location for Re = 100 where T = 6.0. To illus- 

trate the relative magnitudes of all three components 

of velocity in the flow field, we show the axial dis- 
tribution of the velocity components at 
r = (R, - R,)/2 for any arbitrary 0 location. The base 
flow (u distribution) is found to be strongly affected 
by the secondary (U-W) flow field. The relief plot for 
the circumferential component of the velocity field 
along an arbitrary r-z plane is shown in Fig. 3. The 

effect of the three pairs of the Taylor cells on the base 
flow is evident. The axial component of the velocity 
field along the r-0 plane at z = 0.8 is displayed in Fig. 
4. The presence of a cell is clearly demonstrated at this 
location as the axial velocity undergoes a change in 

sign along the radius of the gap width. 
A pure natural convective case (Gr = I .39 x 10“ and 

FIG. 4. Axial velocity distribution along r-0 plane at z = 0.8. Gr = 0.0, Re = 100, r = 6.0 

60 

-60 
0.625 0.825 1.025 1.225 1.425 1. 

r 
FIG. 5. Azimuthal velocity distribution along the radius at 0 = 90”, z = 0.5 zH for Gr = 1.39 x 104, Re = 0.0. 
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Re = 0) is considered next. Figure 5 shows the azi- 
muthal velocity distribution along the radius at 
6 = 90” and z = 0.5 zH. The aspect ratio for the above 
case is 6.0. The velocity distribution shows the charac- 
teristic flow inversion encountered in natural con- 
vection flows in a horizontal annulus. Results 
obtained for an infinitely long horizontal annulus 
(f = co) by Fusegi et al. [l 1] for the same conditions 
are also shown in Fig. 5. While the present results 
agree well with the predictions given in ref. [l 11, the 
peak values of the velocity predicted for the finite 
aspect ratio annulus are smaller than those predicted 
for the infinitely long annulus. This is due to the 
damping effect of the end-plates considered in the 
present calculations. 

Sets of calculations were then carried out where the 
Reynolds number was fixed at 100 while the Grashof 
number was varied from 138 to 6944. The calculations 
were carried out for three specific values of r, i.e. 
3.0, 6.0 and 10.0. Detailed results for the cases with 
f = 6.0 are shown below. Figures 6(a) and (b) show 

100 

50 
V 

0 

0) 

FIG. 6. (a) Local Nusselt number distribution on the inner 
cylinder. Re = 100, Gr = 138, r = 6.0. (b) Local Nusselt 
number distribution on the outer cylinder. Re = 100, 

Gr= 138,r=6.0. 

FIG. 7. (a) Azimuthal velocity distribution along the r-z 
plane at 0 = 90” location. Re = 100, Gr = 138, I- = 6.0. (b) 
Azimuthal velocity distribution along the r-z plane at 
0 = 180” location. Re = 100, Gr = 138, r = 6.0. (c) Azi- 
muthal velocity distribution along the r-z plane at 0 = 270 

location. Re = 100, Gr = 138, T’ = 6.0. 

the relief plots of local Nusselt number Nu (z, 0) dis- 
tribution at the inner and outer cylinder for Re = 
100 and Gr = 138 with 0 = 0.014. The densiometric 
Froude number (r is quite small, which means that 
the centrifugal force dominates. The flow pattern is 
characterized by the appearance of Taylor cells which 
strongly affects the heat transfer characteristics at the 
inner cylinder. A strong jet-like flow exists at the 
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demarcation of two counter-rotating cells which 
results in increased heat transfer at the inner and outer 
cylinder surfaces [IO]. The variation of the Nusselt 
number is wave-like in the axial direction owing to 
the regular formation of the Taylor cells. The local 

heat transfer is, however, almost constant along the 
circumferential direction. As the surface area of the 
inner cylinder is larger than that of the outer cylinder, 

the magnitude of the average Nusselt number on the 
inner cylinder is larger than that of the outer cylinder. 
Energy balance calculations resulted in an excellent 
agreement between the inner and the outer cylinder 
heat transfers. For the same Re and D = 0.14 (results 

not shown), the wavy nature of the Nusselt number 
distribution along the axial direction persists, indi- 
cating the continued presence of the Taylor cells. The 
velocity field within the annulus is shown next for the 
case where Re = 100, Gr = 6944, and cs = 0.69. The 
circumferential velocity component v is shown along 
the r-z plane at 0 = 90, 180 and 270 in Figs. 7(a), (b) 
and (c), respectively. It is clear from these figures 

that, at this value of Grashof number, the buoyancy- 
induced field is strong and the effects of the Taylor 

cells on the heat transfer are subdued. At this high 
Grashof number, the critical Reynolds number for the 
onset of the Taylor cells is higher than 100. We did not 

(a) 

(b) 

FIG. 8. (a) Local Nusselt number distribution on the inner 
cylinder. Re = 100, Gr = 6944, r = 6.0. (b) Local Nusselt 
number distribution on the outer cylinder. Re = 100, 

Gr = 6944, I- = 6.0. 

attempt to evaluate the value by simulation because at 
the higher Re steady laminar flow may not be present. 
The heat transfer results for the above case are shown 
in Figs. 8(a) and 7(b). For the inner cylinder (Fig. 

8(a)), the local heat transfer varies along the cir- 
cumferential direction only. The shape of the plots 

looks similar to those found in typical natural con- 
vection flow fields in a horizontal annulus. For the 

outer cylinder (Fig. 8(b)), the Nusselt number peaks 
near 0 = 7~ radians. The flow field near the outer cyl- 
inder is vigorous and the effects of two stationary end 
walls on heat transfer are prominent in Fig. 8(b). For 

the outer cylinder the heat transfer peaks near the 
end-plates. 

Figures 9(a) and (b) show the distribution of the 
circumferentially averaged Nusselt number Nus (for 
the inner and the outer cylinders) along the axial 

(a) 4I 
3- 

KJ 6 

2- 

v . 

‘/ 6 

(b) .) 

FIG. 9. (a) Circumferentially averaged Nusselt number, Nun, 
distribution for the inner cylinder. Re = 100, r = 6.0, 
Gr = 138. 1388. 6944. Co) Circumferentiahv averaged Nus- 
selt number, kB, distribution for the *outer cylinder. 

Re = 100, l- = 6.0, Gr = 138, 1388,6944. 
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FIG. 10. (a) Axially averaged Nussdt number, A& dis- 
tribution fortheinnercytinder. Re = 100, r = 6.0, Gr = 138, 
1388, 6944. (b) Axially averaged Nusselt number, Nu:. dis- 
tribution for the outer cylinder. Re = 100, r = 6.0, 

Gr = 138,1388,6944. 

direction for the cases where I = 6, Re = 100 and 
(r = 0.014, 0.14 and 0.69, respectively. Figures 10(a) 
and (b) show the Nu, dist~bution along the B diree- 
tion (for the inner and the outer cylinders) for the 
above cases. The circumferential averaging provides 
the general information along the axial direction while 
Nuz shows the overall heat transfer variation along 
the 6 direction. It can be seen from Figs. 9(a) and (b) 
that for c = 0.014, which is the rotation dominated 
case, that Nus fluctuates along the axial direction 
according to the distribution of the Taylor vortices. 
In Figs. 10(a) and (b), Nu, appears as a flat line for 
B = 0.014. For e = 0.69, which is a buoyancy domi- 
nated case, the Nu, changes significantly with B while 
the A$, variations in Figs. 9(a) and (b) look rather 
flat. The effect of the Taylor cells on the heat transfer 
is prominent for small values of 6, It is interesting to 

(b) 

FIG. Il. (a) Local Nusselt number distribution on the inner 
cylinder. Re = 100, Gr = 138, r = 3.0. (b) Local Nusselt 
number distribution on the outer cylinder. Re = 100, 

Gr = 138. I’ = 3.0. 

note that the buoyancy effects dominate well before (r 
reaches a value of unity. 

Results are presented next for heat transfer in 
shorter annuli. Figures 11 (a) and (b) show the local 
Nusselt number dist~b~tions along the inner and the 
outer cylinders for Re = 100, Gr = 138 and r = 3.0. 
From the profiles, it is evident that only one pair of 
Taylor cells is formed as opposed to three for the 
similar case with I- = 6.0. Figures 12(a) and (b) show 
the heat transfer results for I = 1.0 where the other 
parameters were the same as before. The Nusselt num- 
ber values are substantially smaller due to the insu- 
lated end caps, however, a pair of Taylor cells is still 
evident. 

In Fig. 13, the variation of the mean global heat 
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(b) 

Nu 

FIG. 12. (a) Local Nusselt number dist~bution on the inner 
cylinder. Re = 100, Gr = 138, r = 1.0. (b) Local Nusselt 
number distribution on the outer cylinder. Re = 100, 

Gr= 138,r= 1.0. 
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FIG. 13. Global mean Nusselt number as a function of 
a(Gr/Re*) for Re = 100 for three different aspect ratios. 

tion of the aspect ratio for two values of u with 
Re = 100. Interesting features are observed in this 
figure. For all cases, the heat transfer drops off sharpiy 
as the aspect ratio is decreased. For rotation and 
dominated cases, heat transfer is found to attain the 
maximum value when r is between 3 and 4. For larger 
aspect ratios, the buoyancy dominated case reaches 
an asymptote. However, the rotation dominated case 
continues to show a slow decrease in heat transfer as 
the aspect ratio is increased. However, for even larger 
aspect ratios (than those considered in Fig. 14), the 
heat transfer will reach an invariant value. 

A limited study was carried out to investigate the 
effects of rotation on the heat transfer as the Gr and 
I- values were held constant. Figures 15 and 16 present 
the dist~bution of averaged Nusselt numbers Nus and 
I%$ along the axial and ~r~umferential directions for 
the inner cylinder where Gr and r are held fixed at 
2777 and 6.0, respectively, and the rotational speed of 

transfer at the inner cylinder as a function of Q (at 
Re = 100) is shown for three different aspect ratios. 
All three curves show minima values indicating the 
opposing effects of the buoyant and rotational flows. 
When CT is between 0.1 and 0.3, the Tayior cells and 
the developing buoyancy-indu~d flow fiefds appear 
to have a cumulative destructive effect on the heat 
transfer. A steady increase is shown in heat transfer 
with increasing values of c when the flow becomes 
buoyancy dominated. For the rotation dominated 
cases, the global heat transfer was found to decrease 
slightly with increasing aspect ratio. For the buoyancy 
dominated cases, the trend was found to be reversed. 
However, no generalization can be made as these 
trends can depend on the Re itself (presence of sec- 
ondary flow, turbulence, etc.). 

Figure 14 shows the global heat transfer as a func- 

s- 
. 

zin4 
l’l 

2- 

FIG. 14. Global mean Nusselt number as a function of 
the aspect ratio for Re = 100 and two different values of 

s(Gr/Re2). 



z The radius ratio of the annulus was held fixed for the 
calculations, but the effect of the aspect ratio on the 

FIG. 15. Circumferentially averaged Nusselt number, NuO, 
distribution for the inner cylinder. Gr = 2777, P = 6.0, 

flow field and heat transfer was explored. These effects 

Re = 50,80, 130. 
were investigated in detail for Re = 100 (sufficient to 
trigger secondary flows in an isothermal annulus) as 
the Gr and o were varied systematically. A limited 
study was also carried out where Gr and I’ were held 

3, 
I fixed at 2777 and 6.0, respectively, and the Re values 

were varied. 
In rotation dominated cases, for q = 2.6, the global 

heat transfer attains the maximum value when the 
aspect ratio is between 3.0 and 4.0. Three pairs of cells 

i;i; 
are observed within the annulus for the range of the 

L 
2 

Reynolds number considered. In the buoyancy domi- 
nated cases, the global heat transfer increases with the 
aspect ratio and reaches an asymptote (equivalent 
two-dimensional solution). 
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FXG. 16. Axially averaged Nusselt number, Nu,, distribution 
for the inner cylinder. Gr = 2777, I = 6.0, Re = 50,80, 130. 

the inner cylinder is varied (a = 0.164, 0.43 and 1.1). 
The corresponding results for the outer cylinder are 
not shown for the sake of brevity. Figure 15 shows 
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3. T. H. Kuehn and R. J. Goldstein, An experimental and 
theoretical study of natural convection in the annulus 

that when e is small (high ipe), the presence of the between horizontal concentric annulus, J. Fluid Mech. 

Taylor cells considerably augments the heat transfer. ‘75,695-719 (1976). 

When Gr = 2777 and Re = 80, the flow is still found 
4. P. F. Hodnett, Natural convection between horizontal 

to be buoyancy dominated as seen in Fig. 16. From 
heated concentric circular cylinders, J. Appt. Math. Phys. 
24,507-516 (1973). 

our calculations, at this Gr, the onset of rotational 
instability occurs somewhere between Re = 80 and 
130. As discussed earlier, from the linear stability 
theory, the critical Reynolds number for the onset of 
the Taylor vortices for the isothermal problem is 64. 
The natural convection flow field (which is well 
developed at Gr = 2777) thus inhibits and delays the 
formation of the Taylor cells. From Fig. 16 it is seen 
that the azimuthal variation becomes important when 

5. B. Farouk and S. I. Guceri, Laminar and turbulent natu- 
ral convection in the annulus between horizontal con- 
centric cylinders, ASME J. Heat Transfer 104, 631-636 
(1982). 

6. G. 1.. Taylor, Stability of viscous liquid contained 
between two rotating cvlinders. Phil. Trans. Sot. A 223. 
289-343 (1923). - - 

7. D. Coles, Transition in circular Couette flow, J. Fluid 
Mech. 21,385-425 (1965). 

8. R. C. DiPrima and H. L. Swinney, Instabilities and 
transition in flow between concentric rotating cylinders. 

in the stationary inner cylinder occurs at the 0” 
location. The location shifts towards higher 0 values 
as the rotational speed of the inner cylinder increases. 

CONCLUSIONS 

Thr~~mensional mixed convection flows 1955 

In this paper, the interaction of centrifugal and 
buoyancy forces has been studied in a finite horizontal 
annulus with a heated rotating inner cylinder. The 
resulting flows are fully three dimensional for cases 
where the rotational instability triggers the formation 
of Taylor cells. Owing to the existence of the buoyancy 
force, the critical Reynolds (Taylor) number value 
will be higher for the heated rotating inner cylinder. 
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ECOULEMENTS DE CONVECTION MIXTE TRIDIMENSIONNELLE DANS UN ESPACE 
ANNULAIRE HORIZONTAL AVEC LE CYLINDRE CIRCULAIRE INTERIEUR TOURNANT 

Rbum&L’existence d’instabilites hydrodynamiques pour des ecoulements dans l’espace annulaire entre 
deux cylindres concentriques avec un ou deux cylindres tournants conduit a la formation des tourbillons 
de Taylor. L’btude du transfert thermique associe est complexe. Pour la configuration horizontale, les effets 
de flottement et de centrifugation (due a la rotation du cylindre) sont orthogonaux et donnent naissance 
a des ecoulements tridimensionnels. On prtsente les resultats d’une analyse tridimensionnelle numerique 
de l’ecoulement et du transfert de chaleur avec le cylindre inteme chaud et rotatif, pour des larges domaines 
de nombres de Reynolds (Taylor) et de Grashof. On examine I’effet de l’instabilite centrifuge sur le transfert 
thermique. Le rapport de forme F varie de 1,0 a 10,O tandis que le rapport des rayons q est maintenu a la 

valeur de 2,6 pour les resultats present& 

DREIDIMENSIONALE MISCHKONVEKTION IN EINEM WAAGERECHTEN 
RINGSPALT MIT BEHEIZTEM UND ROTIERENDEM INNEREM ZYLINDER 

Zusammenfassung-Die Existenz hydrodynamischer Instabilitlten fiihrt zur Bildung von Taylor-Wirbeln 
in der Striimung im Ringraum zwischen zwei konzentrischen Zylindern, von denen entweder einer oder 
beide rotieren. Die Untersuchung des Warmetransports innerhalb des rotierenden Hohlraums ist sehr 
kompliziert. Bei waagerechter Anordnung stehen die Auftriebswirkung und die Zentrifugalwirkung (her- 
vorgerufen durch den beheizten rotierenden Zylinder) zueinander senkrecht und Whren zu einer vollstiindig 
dreidimensionalen Striimung. Es werden die Ergebnisse einer dreidimensionalen numerischen Unter- 
suchung von Striimung und Wlrmetransport in einem waagerechten Ringspalt mit beheiztem rotierendem 
innerem Kreiszylinder vorgestellt. Dies geschieht fiir einen weiten Bereich der Rotations-Reynolds-(Taylor) 
Zahl und der Grashof-Zahl. Der EinfluB der Zentrifugal-Instabilitat auf den Warmetransport wird iiber- 
priift. Das Seitenverhlltnis f wird zwischen 1,O und IO,0 variiert, wiihrend das Radienverhaltnis q des 

Ringspaltes konstant den Wert 2,6 behalt. 

TPEXMEPHbIE TEgEHHII IIPH CMEIIIAHHOR KOHBEKHHH B I-OPH30HTknbHOM 
KOJIbHEBOM KAHAJIE C HAFPETbIM BPAIIIAK)IIIHMCII BHYTPEHHMM KPYI-OBbIM 

HRJIWH~POM 

AuHoTaqnf+&uwiae rWApOA4HHaMW'leCKHX HeyCTOiiWBOCTe& IIpHBOaHT K o6paaosamiro BHXpeii 

Taiinopa B TeWHHnX II0 KOAbUeBOMy KaIEUly MeXAy AByMn KOH~eHTpHWCiCHMH l@iJUUiApaMIi,OAHH H3 

KOTOPMX H~U o6a epamamrcn. Mccnenoeamie retmonepenoca BO epamalomeficn r10nocrH nanne~0-1 
CJIOXCHOk 3aAaqeir. npH rOpH30HTZWbHOti KOH@HrypaWH 3+&KTbl lIOA5eMHblX H ueHTpO&KHbIX CUn 

(C03AaBaeMblX HarpeTblM BpaQatoUHMCn ~JlHtiApOM)OpTOrOH~bHbI W BbI3blBWT nOAHOCTbH3 pa3BI,- 

Tbte npocrpaiicreemibie TeSerimi. rIpeAcTaBneebI pe3yJIbTaTbl TpeXMepHOrO mscneiinoro amuni3a 
regemiii n rennonepenoca B ropn30nTanbrioh4 rconbpeeeobr zana.ne c ~irirperb~~ epaualouuibicn BH~T~~H- 

HRM KpyrOBbiM uH,,nHnpOM. HOnyqeHbi pemeHnn Qna mHpoKOr0 HHTepBma I13MeHeHHf, BpaUtaTeJIb- 

Hero 4ncna PefiHOJIbACa (%tiOpa) w wicna rpacro+a. OnpenenneTcn wuinHHe qewrpo6exuio% 

HeycToiigHBocTa Ha TennonepeHoc. PesynbTaTw npeAnasnewnnn oTHomeHsincrop0~ r, W3rdeHnmme- 
rocz OT 1,O no lO,O, w OTHomeHHn parurycoe fj KonbUeBOro Kariana, CocraBnmomero 2,6. 


