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Abstract— The existence of hydrodynamic instabilities leads to the formation of Taylor vortices in flows
in the annulus between two concentric cylinders with one or both cylinders rotating. The study of heat
transfer within the rotating enclosure is complex. For horizontal configuration, the buoyancy and the
centrifugal effects (created by the heated rotating cylinder) are orthogonal and give rise to fully three-
dimensional flows. The results of a three-dimensional numerical analysis of flows and heat transfer in a
horizontal annulus with a heated rotating inner circular cylinder are presented. Solutions are presented
over a wide range of the rotational Reynolds (Taylor) number and the Grashof number. The effect of the
centrifugal instability on the heat transfer is examined. The aspect ratio I is varied from 1.0 to 10.0 while
the radius ratio # for the annulus is maintained at the value of 2.6 for the results presented.

INTRODUCTION

THE sTUDY of heat transfer in rotating bodies has a
variety of practical applications in industry. These
include cooling of turbine rotors or electrical motor
shaft, cooling of high speed gas bearings, rotating
condensers for sea water distillation, etc. The flow
fields in such systems are complex due to interactions
of the inertia, buoyancy and the centrifugal effects.
In a heated rotating system the buoyancy and the
centrifugal forces are of importance. The resultant
combination of these determines the flow pattern and
the heat transfer mechanism. Two-dimensional natu-
ral convection in a horizontal concentric annulus has
been intensely studied numerically and experimentally
in both laminar and turbulent regimes [1-5]. The
forced flow due to an unheated rotating cylinder, in
which only the centrifugal force is considered, will
lead to the Taylor vortices because of the existence of
hydrodynamic instability when the Reynolds (Taylor)
number reaches a critical value [6,7]. A com-
prehensive review of the analytical and experimental
investigations for the annulus with a rotating inner
cylinder is given by DiPrima and Swinney [8]. Ball
and Farouk [9] and Ball {10] undertook a detailed
study on the development of Taylor vortices and the
distribution of heat transfer in a vertical annulus with
a heated rotating inner cylinder. For the vertical orien-
tation (for moderate speeds of rotation), the flow field
generated by the centrifugal and the buoyancy effects
are both axisymmetric. For the horizontal con-
figuration, however, the buoyancy and the centrifugal
effects will give rise to fully three-dimensional flows
when the centrifugal force is strong enough to trigger
the formation of the Taylor cells. Fusegi ef al. [11}
presented numerical results for two-dimensional

(r—0) mixed convection in the annulus between hori-
zontal concentric cylinders with a heated rotating
inner cylinder. The study was limited to slow
rotational speeds of the inner cylinder so that the
appearance of Taylor cells was precluded. When the
rotational Reynolds number is increased beyond a
critical value, the flow will become unstable hydro-
dynamically and will then lead to the formation of
Taylor vortices which necessitates a three-dimensional
analysis. Fusegi and Farouk [12] also presented results
for three-dimensional natural convection within an
annulus with an aspect ratio of unity.

This paper presents the results of three-dimensional
mixed convection in a horizontal rotating annulus.
The main objective of the paper is to quantify the
interaction of the buoyancy and centrifugal forces and
determine the effects of secondary flow structures (due
to the Taylor cells) on the heat transfer. From the heat
transfer distributions on the surfaces, the structure of
convective flow is evaluated. The inner cylinder is
considered to be rotating at a uniform speed while
the outer cylinder and end-plates are held stationary.
Both the inner and the outer cylinders are isothermal
with the inner cylinder being hotter than the outer one.
The no-slip conditions are applied for all enclosure
surfaces. Thermally insulated flat end-plates are con-
sidered. The geometry of the problem is shown in Fig.
1 where the angle # is measured from the bottom
vertical line.

MATHEMATICAL FORMULATION

The geometry is specified by the radius ratio
n = R,/R; and the aspect ratio I' = H/d, where d
denotes the gap width (R,— R;). The aspect ratio is
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gap width, R,— R,
Gr  Grashof number, gBd*(T,—T,)/v*
H  height of annulus
k  thermal conductivity
Nusselt number, gd/k(T,—T,)
p  pressure
Pr Prandtl number, C,u/k
g  heat flux
r radius
R radius of inner or outer cylinder
Re Reynolds number, wR;d/v
t time
T  temperature
u  radial velocity component
v angular velocity component

NOMENCLATURE

w  axial velocity component
z axial location.

Greek symbols
I  aspect ratio, H/d
radius ratio, R,/R,
circumferential location
molecular viscosity
kinematic viscosity
densiometric Froude number, Gr/Re?
angular speed of rotation of inner cylinder.

ga<® o=

Subscripts
i inner cylinder
o  outer cylinder.

varied from 1.0 to 10.0 and the radius ratio is set equal
to 2.6 for all cases considered. The wide range of
aspect ratio studied revealed interesting effects on the
structure of the secondary flow fields. Air is con-
sidered as the medium, with the Prandtl number being
equal to 0.72.

Governing equations and boundary conditions
Three-dimensional incompressible Navier—Stokes
and energy equations were used to describe the
problem. By introducing the following dimensionless
variables (an overbar means a dimensional quantity)

F z a 0 w ; tu,
= — = — = U=— W= — = —
r d =a Uy uqy Uy d
p T-T v
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the dimensionless time-dependent equations of fluid
flow and heat transfer in cylindrical coordinates are
given by
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FiG. 1. The three-dimensional annular geometry.
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The Boussinesq approximation is applied in the
above formulation. The coupled sets of equations are

numerically integrated with the following boundary
conditions:

along the inner cylinder: (r = 0.625)
u=0 v=Re w=0 T=1
along the outer cylinder (r = 1.625)

u=0 v=0 w=0 T=0

along the end-plates (z = 0 and z = z)
oT

u=0 0z

v=0 w=0 0.

For the present formulations and the non-dimen-
sional parameters used, the rotational effects enter via
the boundary conditions at the inner cylinder. It can
be shown easily that the relative strength of the buoy-
ancy and the centrifugal forces in the problem is given
by the ratio ¢ (densiometric Froude number) =
Gr/Re®. For isothermal flows (Gr = 0.0), the rota-
ting inner cylinder induces a Couette flow for slow
speeds of rotation. The rotational instability (Taylor
vortex flow) is triggered when the Reynolds number
exceeds a critical value (often described as the critical
Taylor number in the literature). When a temperature
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gradient exists in the problem, the buoyancy induced
flow interacts with the rotational flow which can delay
the onset of the Taylor vortex type flow in the annulus.

The Nusselt numbers Nu (z, 8) for the inner and the
outer cylinders are defined as

Nu(z,0); = q(z,0):d/Tk(T; — T,)]
and
Nu(z,6), = q(z,0),d/[k(T;— T,)],

respectively.

For convenience in presenting the results, we define
the circumferentially averaged Nusselt number Nu,
for the inner and outer cylinders as

1 2n
Nuy = — J Nu (6, z)d6.
2n 0

Similarly, the longitudinally averaged Nusselt number
Nu, is defined as follows:

— 1 [
Nu, = . Nu(9,z)dz

H JO

where zy is the length of the annulus. The global mean
Nusselt number (for the inner or the outer cylinder)
then can be defined as

1 2 zy
f J Nu(0,z)dz d6.
(1] 0

2nzy

U=

NUMERICAL METHOD

A staggered mesh system is adopted for the deri-
vations and solution of the finite difference approxi-
mation to the differential equations. The SIMPLE
scheme of Patankar [13] is used to solve the finite
difference equations resulting from the discretization.
The application of the SIMPLE algorithm in cyl-
indrical coordinates is quite common and the details
of the application are given in Patankar [13]. For
specified Grashof and Reynolds numbers, the result-
ing finite difference equations are solved in a time
marching manner until a steady state condition is
achieved. The computations employ a uniform mesh
system with 11(r) x 24(8) x 30(z) grid points for low
aspect ratio (I" < 6.0) cases. The grid points in the
axial directions were proportionately increased for the
high aspect ratio cases. For the range of parameters
considered and the aspect and radius ratios of the
problem geometry, the above grids were found to be
adequate. Sample calculations were performed with
denser grids for selected cases which did not produce
appreciable differences in the flow structure or the
heat transfer characteristics. All computations were
performed on a CRAY X-MP supercomputer at the
Pittsburgh Supercomputing Center. The typical CPU
time used for one complete case was about 600 s.
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RESULTS AND DISCUSSION

Results were obtained for isothermal (Gr = 0.0),
non-rotating (Re = 0.0) and mixed convection modes
for the finite annular geometry. The maximum allow-
able values of Gr and Re were sufficiently low so that
only laminar flows were encountered. While results
were obtained for different values of the aspect ratio
I', the radius ratio # was held constant at 2.6 for all
cases considered. For the isothermal case, the flow
field is essentially one dimensional (except near the
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F1G. 2. (a) Streamlines for axisymmetric flow in the finite

annulus at any arbitrary 0 location Gr = 0.0, Re = 100,

I" = 6.0. (b) Velocity distributions along the length of the

annulus at r = (r,—r;)/2 at any arbitrary 0 location.
Gr =0.0, Re = 100, T = 6.0.

FiG. 3. Azimuthal velocity distribution along the r—z plane
at any arbitrary location. Gr = 0.0, Re = 100, I" = 6.0.
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end-plates) when the rotational speed of the inner
cylinder is below the critical Reynolds number. From
linear stability theory, the critical Reynolds number
for the onset of the Taylor vortices (for a wide gap
case) is equal to 64. This was verified by our com-
putations also. When Re > 64, the flow field is char-
acterized by toroidal vortices which appear in the
form of counter-rotating cells. The cells usually occur
in pairs and for moderate speeds of rotation of the
inner cylinder, the flow field remains axisymmetric.
Figure 2(a) shows the streamlines (based on the radial
and axial components of velocities) along any arbi-
trary 0 location for Re = 100 where I' = 6.0. To illus-
trate the relative magnitudes of all three components
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of velocity in the flow field, we show the axial dis-
tribution of the velocity components at
r = (R,~ R;)/2 for any arbitrary 0 location. The base
flow (v distribution) is found to be strongly affected
by the secondary (u—w) flow field. The relief plot for
the circumferential component of the velocity field
along an arbitrary r—z plane is shown in Fig. 3. The
effect of the three pairs of the Taylor cells on the base
flow is evident. The axial component of the velocity
field along the r-6 plane at z = 0.8 is displayed in Fig.
4. The presence of a cell is clearly demonstrated at this
location as the axial velocity undergoes a change in
sign along the radius of the gap width.

A pure natural convective case (Gr = 1.39 x 10* and

FiG. 4. Axial velocity distribution along r-6 plane at z = 0.8. Gr = 0.0, Re = 100, I" = 6.0.
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F1G. 5. Azimuthal velocity distribution along the radius at 6 = 90°, z = 0.5 zy for Gr = 1.39 x 10%, Re = 0.0.
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Re = 0) is considered next. Figure 5 shows the azi-
muthal velocity distribution along the radius at
0 = 90° and z = 0.5 z. The aspect ratio for the above
case is 6.0. The velocity distribution shows the charac-
teristic flow inversion encountered in natural con-
vection flows in a horizontal annulus. Results
obtained for an infinitely long horizontal annulus
(T = o0) by Fusegi et al. [11] for the same conditions
are also shown in Fig. 5. While the present results
agree well with the predictions given in ref. [11], the-
peak values of the velocity predicted for the finite
aspect ratio annulus are smaller than those predicted
for the infinitely long annulus. This is due to the
damping effect of the end-plates considered in the
present calculations.

Sets of calculations were then carried out where the
Reynolds number was fixed at 100 while the Grashof
number was varied from 138 to 6944. The calculations
were carried out for three specific values of T, i.e.
3.0, 6.0 and 10.0. Detailed results for the cases with
I' = 6.0 are shown below. Figures 6(a) and (b) show

(b)

F1G. 6. (a) Local Nusselt number distribution on the inner

cylinder. Re = 100, Gr = 138, T = 6.0. (b) Local Nusselt

number distribution on the outer cylinder. Re = 100,
Gr=138,T = 6.0.
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FiG. 7. (a) Azimuthal velocity distribution along the r-z

plane at 8 = 90° location. Re = 100, Gr = 138, " = 6.0. (b)

Azimuthal velocity distribution along the r-z plane at

0 = 180° location. Re = 100, Gr =138, T = 6.0. (c) Azi-

muthal velocity distribution along the r—z plane at § = 270°
location. Re = 100, Gr = 138, " = 6.0.

the relief plots of local Nusselt number Nu (z, 6) dis-
tribution at the inner and outer cylinder for Re =
100 and Gr = 138 with ¢ = 0.014. The densiometric
Froude number ¢ is quite small, which means that
the centrifugal force dominates. The flow pattern is
characterized by the appearance of Taylor cells which
strongly affects the heat transfer characteristics at the
inner cylinder. A strong jet-like flow exists at the
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demarcation of two counter-rotating cells which
results in increased heat transfer at the inner and outer
cylinder surfaces [10]. The variation of the Nusselt
number is wave-like in the axial direction owing to
the regular formation of the Taylor cells. The local
heat transfer is, however, almost constant along the
circamferential direction. As the surface area of the
inner cylinder is larger than that of the outer cylinder,
the magnitude of the average Nusselt number on the
inner cylinder is larger than that of the outer cylinder.
Energy balance calculations resulted in an excellent
agreement between the inner and the outer cylinder
heat transfers. For the same Re and ¢ = 0.14 (results
not shown), the wavy nature of the Nusselt number
distribution along the axial direction persists, indi-
cating the continued presence of the Taylor cells. The
velocity field within the annulus is shown next for the
case where Re = 100, Gr = 6944, and ¢ = 0.69. The
circumferential velocity component » is shown along
the r—z plane at = 90, 180 and 270 in Figs. 7(a), (b)
and (c), respectively. It is clear from these figures
that, at this value of Grashof number, the buoyancy-
induced field is strong and the effects of the Taylor
cells on the heat transfer are subdued. At this high
Grashof number, the critical Reynolds number for the
onset of the Taylor cells is higher than 100. We did not

(b)

FiG. 8. (a) Local Nusselt number distribution on the inner

cylinder. Re = 100, Gr = 6944, T" = 6.0. (b) Local Nusselt

number distribution on the outer cylinder. Re = 100,
Gr=6944, T = 6.0.
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attempt to evaluate the value by simulation because at
the higher Re steady laminar flow may not be present.
The heat transfer results for the above case are shown
in Figs. 8(a) and 7(b). For the inner cylinder (Fig.
8(a)), the local heat transfer varies along the cir-
cumferential direction only. The shape of the plots
looks similar to those found in typical natural con-
vection flow fields in a horizontal annulus. For the
outer cylinder (Fig. 8(b)), the Nusselt number peaks
near 8 = = radians. The flow field near the outer cyl-
inder is vigorous and the effects of two stationary end
walls on heat transfer are prominent in Fig. 8(b). For
the outer cylinder the heat transfer peaks near the
end-plates.

Figures 9(a) and (b) show the distribution of the
circumferentially averaged Nusselt number Nu, (for
the inner and the outer cylinders) along the axial

(a) 4

Nue

(b) 2

F1G. 9. (a) Circumferentially averaged Nusselt number, Nu,,

distribution for the inner cylinder. Re =100, I = 6.0,

Gr = 138, 1388, 6944. (b) Circumferentially averaged Nus-

selt number, Nuy, distribution for the outer cylinder.
Re =100, T = 6.0, Gr = 138, 1388, 6944.
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FiG. 10. {a) Axially averaged Nusselt number, Nu,, dis-

tribution for the inner cylinder. Re = 100, T = 6.0, Gr = 138,

1388, 6944. (b} Axially averaged Nusselt number, Nu.. dis-

tribution for the outer cylinder. Re =100, I =60,
Gr = 138, 1388, 6944.

direction for the cases where I = 6, Re = 100 and
o = 0.014, 0.14 and 0.69, respectively. Figures 10(a)
and (b) show the Nu, distribution along the 8 direc-
tion (for the inner and the outer cylinders) for the
above cases. The circumferential averaging provides
the general information along the axial direction while
Nu, shows the overall heat transfer variation along
the & direction. It can be seen from Figs. 9(a) and (b)
that for ¢ = 0.014, which is the rotation dominated
case, that Nu, fluctuates along the axijal direction
according to the distribution of the Taylor vortices.
In Figs. 10(a) and (b), Nu, appears as a flat line for
o = 0.014. For ¢ = 0.69, which is a buoyancy domi-
nated case, the Nu, changes significantly with 8 while
the Nu, variations in Figs. 9(a) and (b) look rather
flat. The effect of the Taylor cells on the heat transfer
is prominent for small values of ¢. It is interesting to
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(b}

F1G. 11. (a) Local Nusselt number distribution on the inner

cylinder. Re = 100, Gr =138, T" = 3.0. (b) Local Nusselt

number distribution on the outer cylinder. Re = 100,
Gr=138,T =30

note that the buoyancy effects dominate well before &
reaches a value of unity.

Results are presented next for heat transfer in
shorter annuli. Figures 11(a) and (b) show the local
Nusselt number distributions along the inner and the
outer cylinders for Re = 100, Gr = 138 and I" = 3.0.
From the profiles, it is evident that only one pair of
Taylor cells is formed as opposed to three for the
similar case with I" = 6.0. Figures 12(a) and (b) show
the heat transfer results for I' = 1.0 where the other
parameters were the same as before. The Nusselt num-
ber values are substantially smaller due to the insu-
lated end caps, however, a pair of Taylor cells is still
evident.

In Fig. 13, the variation of the mean global heat
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F16. 12. (a) Local Nusselt number distribution on the inner

cylinder. Re =100, Gr = 138, T = 1.0. (b} Local Nusselt

number distribution on the outer cylinder. Re = 100,
Gr=138,T = 1.0,

transfer at the inner cylinder as a function of ¢ (at
Re = 100) is shown for three different aspect ratios.
All three curves show minima values indicating the
opposing effects of the buoyant and rotational flows.
When ¢ is between 0.1 and 0.3, the Taylor cells and
the developing buoyancy-induced flow fields appear
to have a cumulative destructive effect on the heat
transfer. A steady increase is shown in heat transfer
with increasing values of ¢ when the flow becomes
buoyancy dominated. For the rotation dominated
cases, the global heat transfer was found to decrease
slightly with increasing aspect ratio. For the buoyancy
dominated cases, the trend was found to be reversed.
However, no generalization can be made as these
trends can depend on the Re itself (presence of sec-
ondary flow, turbulence, etc.).

Figure 14 shows the global heat transfer as a func-

YanG and B. FarOouk
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100

Fic. 13. Global mean Nusselt number as a function of
o(Gr/Re?) for Re = 100 for three different aspect ratios.

tion of the aspect ratio for two values of ¢ with
Re = 100. Interesting features are observed in this
figure. For all cases, the heat transfer drops off sharply
as the aspect ratio is decreased. For rotation and
dominated cases, heat transfer is found to attain the
maximum value when I is between 3 and 4. For larger
aspect ratios, the buoyancy dominated case reaches
an asymptote. However, the rotation dominated case
continues to show a slow decrease in heat transfer as
the aspect ratio is increased. However, for even larger
aspect ratios (than those considered in Fig. 14), the
heat transfer will reach an invariant value.

A limited study was carried out to investigate the
effects of rotation on the heat transfer as the Gr and
I values were held constant. Figures 15 and 16 present
the distribution of averaged Nusselt numbers Nu, and
Nu_ along the axial and circumferential directions for
the inner cylinder where Gr and T are held fixed at
2777 and 6.0, respectively, and the rotational speed of

Fic. 14. Global mean Nusselt number as a function of
the aspect ratio for Re = 100 and two different values of
6(Gr/Re?).
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Nug

FiG. 15. Circumferentially averaged Nusselt number, Nu,,
distribution for the inner cylinder. Gr =2777, T = 6.0,
Re = 50, 80, 130.

1 T Y T T v
0 60 120 180 240 300 380

6(°)
FiG. 16. Axially averaged Nusselt number, Nu,, distribution
for the inner cylinder. Gr = 2777, I = 6.0, Re = 50, 80, 130.

the inner cylinder is varied (o = 0.164, 0.43 and 1.1).
The corresponding results for the outer cylinder are
not shown for the sake of brevity. Figure 15 shows
that when ¢ is small (high Re), the presence of the
Taylor cells considerably augments the heat transfer.
When Gr = 2777 and Re = 80, the flow is still found
to be buoyancy dominated as seen in Fig. 16. From
our calculations, at this Gr, the onset of rotational
instability occurs somewhere between Re = 80 and
130. As discussed earlier, from the linear stability
theory, the critical Reynolds number for the onset of
the Taylor vortices for the isothermal problem is 64.
The natural convection flow field (which is well
developed at Gr = 2777) thus inhibits and delays the
formation of the Taylor cells. From Fig. 16 it is seen
that the azimuthal variation becomes important when
the buoyancy effects dominate. The peak heat transfer
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in the stationary inner cylinder occurs at the 0°
location. The location shifts towards higher 0 values
as the rotational speed of the inner cylinder increases.

CONCLUSIONS

In this paper, the interaction of centrifugal and
buoyancy forces has been studied in a finite horizontal
annulus with a heated rotating inner cylinder. The
resulting flows are fully three dimensional for cases
where the rotational instability triggers the formation
of Taylor cells. Owing to the existence of the buoyancy
force, the critical Reynolds (Taylor) number value
will be higher for the heated rotating inner cylinder.
The radius ratio of the annulus was held fixed for the
calculations, but the effect of the aspect ratio on the
flow field and heat transfer was explored. These effects
were investigated in detail for Re = 100 (sufficient to
trigger secondary flows in an isothermal annulus) as
the Gr and o were varied systematically. A limited
study was also carried out where Gr and I" were held
fixed at 2777 and 6.0, respectively, and the Re values
were varied.

In rotation dominated cases, for 5 = 2.6, the global
heat transfer attains the maximum value when the
aspect ratio is between 3.0 and 4.0. Three pairs of cells
are observed within the annulus for the range of the
Reynolds number considered. In the buoyancy domi-
nated cases, the global heat transfer increases with the
aspect ratio and reaches an asymptote (equivalent
two-dimensional solution).
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ECOULEMENTS DE CONVECTION MIXTE TRIDIMENSIONNELLE DANS UN ESPACE
ANNULAIRE HORIZONTAL AVEC LE CYLINDRE CIRCULAIRE INTERIEUR TOURNANT

Résumé—L existence d’instabilités hydrodynamiques pour des écoulements dans I'espace annulaire entre
deux cylindres concentriques avec un ou deux cylindres tournants conduit a la formation des tourbillons
de Taylor. L.’étude du transfert thermique associé est complexe. Pour la configuration horizontale, les effets
de flottement et de centrifugation (due a la rotation du cylindre) sont orthogonaux et donnent naissance
a des écoulements tridimensionnels. On présente les résultats d’une analyse tridimensionnelle numérique
de I’écoulement et du transfert de chaleur avec le cylindre interne chaud et rotatif, pour des larges domaines
de nombres de Reynolds (Taylor) et de Grashof. On examine I’effet de I'instabilité centrifuge sur le transfert
thermique. Le rapport de forme I' varie de 1,0 a 10,0 tandis que le rapport des rayons # est maintenu a la
valeur de 2,6 pour les résultats présentés.

DREIDIMENSIONALE MISCHKONVEKTION IN EINEM WAAGERECHTEN
RINGSPALT MIT BEHEIZTEM UND ROTIERENDEM INNEREM ZYLINDER

Zusammenfassung—Die Existenz hydrodynamischer Instabilititen fithrt zur Bildung von Taylor-Wirbeln
in der Strémung im Ringraum zwischen zwei konzentrischen Zylindern, von denen entweder einer oder
beide rotieren. Die Untersuchung des Wirmetransports innerhalb des rotierenden Hohlraums ist sehr
kompliziert. Bei waagerechter Anordnung stehen die Auftriebswirkung und die Zentrifugalwirkung (her-
vorgerufen durch den beheizten rotierenden Zylinder) zueinander senkrecht und fithren zu einer vollstindig
dreidimensionalen Stromung. Es werden die Ergebnisse einer dreidimensionalen numerischen Unter-
suchung von Stromung und Wérmetransport in einem waagerechten Ringspalt mit beheiztem rotierendem
innerem Kreiszylinder vorgestellt. Dies geschieht fiir einen weiten Bereich der Rotations-Reynolds-(Taylor)
Zahl und der Grashof-Zahl. Der EinfluB der Zentrifugal-Instabilitit auf den Warmetransport wird tiber-
prift. Das Seitenverhiltnis I' wird zwischen 1,0 und 10,0 variiert, wiahrend das Radienverhiltnis n des
Ringspaltes konstant den Wert 2,6 behalt.

TPEXMEPHbBIE TEYUEHUSA IPH CMEWIAHHOM KOHBEKLIMH B TOPU3OHTAJILHOM
KOJIBIJIEBOM KAHAJIE C HAT'PETBIM BPAIAIONIMMCS BHYTPEHHHUM KPYTI'OBBIM
HHUJINHAPOM

Amnoramus—Hayyue THAPOAMHAMHYECKUX HEYCTOHYMBOCTEH NpPMBOJHT K oOpazoBaHMIO BHXpei
Toitylopa B TEYEHHSAX MO KOJBLUEBOMY KaHaly MeXAy ABYMS KOHUSHTPHYECKMMH LMIHHAPAMH, OIHH U3
KOTOpbIX uiaM 06a BpamaioTcs. HMccliemoBaHHe TEIIONEPEHOCa BO BPAMIAIOLIEHCS MOJIOCTH SBJIAETCA
cnoxHoM 3amavel. [Ipu ropu3oHTaNbHOW KOHPHTYpaumH 3PPEKTH MOABEMHBIX H LEHTPOGEXKHRIX CHII
(co3maBaeMbIX HATPETHIM BPAILAIOLIMMCH LEIMHAPOM) OPTOTOHALHB M BLI3HIBAIOT NOJHOCTHIO Pa3Bu-
Thie MPOCTPAHCTBECHHBIC TeueHHs. IlpeacTaBiieHbl pe3yJbTaTel TPEXMEPHOTO YHCIEHHOTO aHajA3a
Te4YeHHu# ¥ TEIUIONEPEHoca B TOPH3OHTAILHOM KOJIbLIEBOM KaHalle ¢ HarpeThiM BPALIAIOLMMCS BHYTPEH-
HHUM KpYrosoiM uMiannapoM. [TonydeHbl pelieHHS A8 LIAPOKOro MHTEPBaJla H3MEHEHHMH BpalllaTesib-
Horo uucsa Pelinonbaca (Tatopa) M umcna [pacroda. Onpenenserca BiHAHME UEHTpoGexHOM
HEYCTOHYMBOCTH Ha TeIUTONEPeHOC. Pe3yIbTaThl IPEACTABIEHL 1Jis OTHOLIEHHS cTopoH I, u3aMenstolwe-
rocs ot 1,0 go 10,0, ¥ OTHOWIEHHS PaAWYCOB 7 KOJBLUEBOro KaHala, COCTaABAAIOMIETO 2,6.



